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Abstract Human-induced processes like eutrophica-
tion are increasing water turbidity and altering vegetated
habitats in the Baltic Sea. Unfortunately, the influence of
these environmental changes on predator–prey interac-
tions remains poorly studied in mobile taxa of this
region. We used three-spined stickleback (Gasterosteus
aculeatus) as a model species to study the combined
effects of turbidity and shoot density on habitat choice
(shelter vs. open) in the presence and absence of pisciv-
orous perch (Perca fluviatilis). Habitat choice of stick-
lebacks was video-monitored and compared between
two paired observation periods: “control” (no predator)
and “risk” (predator present). Though sticklebacks

exhibited a general preference for sheltered habitat
across treatments, repeated measures ANOVA found
that sticklebacks responded to predator presence by
significantly increasing use of the sheltered habitat.
However, shoot density of the shelter interacted with
observation period, where risk-induced shifts of stickle-
backs into sheltered habitat were most apparent and
sustained at higher shoot densities. Stickleback activity
level was generally reduced with predator presence at
higher turbidity and shoot density levels, suggesting a
possible adaptation to reduce predator encounter rates in
visually deteriorated conditions. Overall, our study dem-
onstrates that relatively minute increases (1’s – 10’s of
NTU) in algal turbidity intensify three-spined stickle-
back sheltered habitat use, but vegetation density may
still play a larger role in avoiding predators at these
turbidity levels. When compared with a similar study on
0+ perch, our work suggests that eutrophication (i.e.,
increased turbidity, loss of habitat complexity) may have
variable, taxon- and/or habitat-specific effects on preda-
tor–prey interactions of the Baltic Sea.

Keywords Antipredator behavior . Baltic Sea .

Seagrass . Three-spined stickleback . Turbidity

Introduction

The role of habitat selection in structuring marine com-
munities has become an increasingly important theme in
ecology (Kiflawi et al. 2003; Morris 2003). However,
man-made processes such as eutrophication are
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changing habitat structure and visual conditions in var-
ious aquatic systems. These phenomena are now con-
sidered worldwide threats to fish fauna due to the asso-
ciated declines in food resources (Diehl 1998), but the
impacts on community interactions (e.g., predator–prey
interactions) are relatively unknown. Due to heightened
anthropogenic pressure, nutrient runoff from agriculture
and industry have enhanced the eutrophication process
and thus increased algal turbidity in several lakes and
seas (Utne-Palm 2002; Engström–Öst and Mattila
2008). Bonsdorff et al. (2002) reviewed the influence
of eutrophication on the Baltic Sea and recognized it as a
primary environmental issue of this water body, with
some parts becoming increasingly turbid during last few
decades (Sandén and Håkansson 1996).

Turbidity is a common natural feature of many aquat-
ic environments. In coastal areas, algae and clay are
considered the two main components of turbidity
(Mobley 1994). Algal turbidity is desirable within cer-
tain levels since algae add oxygen and remove nutrients
from water (Boyd 1982). However, turbidity reduces
visibility in aquatic systems by light attenuation (Krik
1985), which can considerably influence community
structure. For example, increased light penetration can
have “top-down” effects by expanding the visual feed-
ing habitat of predatory fishes and allowing consump-
tion of lower trophic levels (Aksnes et al. 2004).
Contrastingly, more turbid environments are considered
somewhat optimal for larval fishes and planktivores that
rely on detecting small particles at close range and are
negatively affected by high amounts of light scattering
(Utne-Palm 2002). Thus, while most fishes have well
developed eyes and rely on vision for foraging, preda-
tion and antipredator behavior (Guthrie and Muntz
1993), the influence of turbidity on marine fish commu-
nities is likely to vary among various feeding guilds and
environmental conditions (Bowmaker 1995). Given this
variation in visual capabilities among fishes, the impact
of increased turbidity is likely to be taxon- and/or life-
stage dependent.

Multiple studies demonstrate that behavioral strate-
gies of fish may change with turbidity. For example, the
northern Pike Esox lucius exhibits a higher degree of
behavioral diversity in a turbid lake than in a clear water
lake (Andersen et al. 2008). Engström–Öst and Mattila
(2008) showed that algae-induced water turbidity affects
both direct (i.e., feeding and habitat choice) and indirect
qualities (i.e., weight) of pike larvae and may therefore
influence larval survival. Ferrari et al. (2010) indicated

that turbidity alters the quality and quantity of visual
information received by the minnow (Pimephales
promelas), with prey recognition significantly impaired
under turbid conditions. In addition, increased algal
turbidity may induce some other behaviors of fish such
as migration, reduced use of shelter and increased use of
open water (reviewed by Utne-Palm 2002). Algal-based
turbidity may also influence prey reaction distances to
predators (Quesenberry et al. 2007), or general predator
avoidance behavior (Abrahams and Kattenfeld 1997).

When exposed to predators, fish often seek shelter in
structurally complex submerged vegetation and avoid
open habitats (Werner et al. 1983; Gotceitas and Colgan
1989). However, many studies suggest turbidity alone
provides shelter against predators, sometimes in place of
complex benthic habitat (Gregory 1993; Gregory and
Northcote 1993; Abrahams and Kattenfeld 1997; Maes
et al. 1998; Snickars et al. 2004; Engström-Öst et al.
2006). As such, several authors have suggested the idea
of “turbidity as cover,” where reduced visual fields
lessen predation risk (Gregory 1993; Aksnes and Utne
1997). Like turbidity, dense vegetation cover also re-
duces visibility and can decrease encounter rates and
foraging efficiency of predators (Nelson and Bonsdorff
1990; Mattila 1992; Candolin and Voigt 2001).
Furthermore, differences in density and morphology of
vegetation may influence foraging rates of predators and
the degree of predator avoidance by prey (Dionne and
Folt 1991; Wychera et al. 1993; Newbrey et al. 2005;
Sass et al. 2006; Shoji et al. 2007; Burfeind et al. 2009).
However, prey refuge and survival in vegetated habitat
may depend on factors other than vegetation density
alone, such as the density of prey, predators and the ratio
of these two densities to one another and vegetation
density (Mattila et al. 2008; Canion and Heck 2009;
Scheinin et al. 2011).

Unfortunately, the interaction between turbidity and
vegetation density on predator–prey relationships re-
mains sparsely studied, though these factors may play
a combined role in community interactions of shallow
benthic environments. The few studies that assess the
relative roles of turbidity and vegetation density suggest
that their combined effect may have substantial impli-
cations on the behavior of prey and predatory fishes
(Snickars et al. 2004; Skov et al. 2007). The aim of the
present study was to examine the fine-scale (i.e. minute-
by-minute) habitat choice of the three-spined stickle-
back when confronted with multiple environmental fac-
tors, such as turbidity, habitat complexity and a predator.
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Previous studies have overlooked the potential impact
of environmental changes on fine temporal scales and
have not assessed changes over relatively small incre-
mental changes in turbidity. These aspects are most
relevant since predator–prey interactions are often sud-
den in nature and both predators and prey may live in
environments where turbidity changes gradually over
time (e.g., in river mouth areas or along archipelago
gradients). We utilized the three-spined stickleback
(Gasterosteus aculeatus) as our representative prey spe-
cies as it is widely distributed freshwater-anadromous
species (Bell and Foster 1994) and a visual predator of
seagrass environments affected by periodic turbidity (Hart
and Gill 1994). As such, the three-spined stickleback
served as a practical model to study the relative effects of
turbidity and habitat loss (i.e., seagrass density) on fish
antipredator behavior.We used the perch (Perca fluviatilis)
as a predator since three-spined sticklebacks are naturally
consumed by this co-occurring piscivore (Wootton
1984; Remichen 1994).

Materials and methods

The main purpose of our experiments was to study
effects of sudden encounters of prey with predators at
different turbidity and habitat complexity levels. All
experiments were carried out at the Husö Biological
Station (60°17′ N, 19°128 50′ E), Åland, Finland, from
mid-August to the first week of September 2008. Three-
spined sticklebacks were collected from a nearby breed-
ing area using a seine net. Only female sticklebacks
were used in the experiments. Male sticklebacks were
not suitable for such amesocosm experiment as they can
exhibit high levels of aggression and social dominance
hierarchies when grouped together (Bakker and
Sevenster 1983; Rowland 1984; Bakker 1986;
McLennan and McPhail 1989). Perch were collected
from Husö Bay using gillnets and quickly transported
to tanks. Approximately 800 sticklebacks were housed
inside the laboratory in six aquariums (100×100×
100 cm) for 4 weeks and ten perch were held in one
large aquarium (300× 300×50 cm) outside the labora-
tory for 1 week prior to the experiment for acclimatiza-
tion. All aquaria were connected with a continuous
flow-through of unfiltered sea water (Temperature: 12–
18 °C, Salinity: 5.20–5.45 psu). Inside the laboratory,
the photoperiod regimewasmaintained 16 L: 8D, which
was approximately the same as the natural photoperiod

during the late boreal summer. The sticklebacks were
maintained on a daily diet of frozen blood worms while
perch were fed juvenile sticklebacks from the holding
tank.

Variations in algal and clay turbidity across a range of
ca.1.5–15 NTU are known to cause significant changes
in refuge use and behavior of sticklebacks (Engström-
Öst et al. 2009) and other small-sized fish (e.g. juvenile
perch and roach; Snickars et al. 2004; Sundblad et al.
2009; Nurminen et al. 2010) which thrive in seagrass
areas of the northern Baltic Sea (Boström et al. 2003).
Three different levels of turbidity were used during
trials: low (2–3 NTU), medium (7–9 NTU) and high
(13–15 NTU). These turbidity levels simulate the natu-
ral turbid conditions in some shallow coastal areas as
well as the breeding grounds of three-spined stickle-
backs of the Baltic Sea during summer. We found tur-
bidity varied between 5 and 15 NTU during field col-
lections for sticklebacks (S. Sohel, pers. obs.). Granqvist
and Mattila (2004) reported that the turbidity level of
sticklebacks breeding area may vary from 0.5 to 45 NTU,
though in nature turbidity levels exceeding 30 NTU are
rare. Lundberg et al. (2009) reported a range of turbidity
levels between 0.2 and 22 NTU in the inner coastal areas
of Bothnian Sea, northern part of the Baltic Sea.
Abrahams and Kattenfeld (1997) used a turbidity level of
13 NTU in their study. In our study area, a turbidity of
2–3 NTU corresponds to Secchi depths about 4–5m and
13–15 NTU to ca. 2.5 m (Granqvist and Mattila 2004),
which are typical for seagrass beds and other vegetated
areas of the northern Baltic Sea. Thus, our experimental
levels of turbidity levels were representative of ranges
observed locally.

Cultures of a 10–15 μm unicellular planktonic algae
(Brachiomonas submarina) were used to create differ-
ent turbidity levels. The initial culture was collected
from Tvärminne Zoological Station (59°50′ N, 23°145
15′ E), Finland. Algae were grown from sea water
(filtered through a 20 μm sieve to eliminate other pos-
sible grazers) in white 60 L buckets with continuous
aeration under natural light. Following Järvenpää and
Lindström (2004), we added fertilizer containing nitro-
gen and phosphorus to the culture to ensure sufficient
nutrients. The levels of turbidity were set manually
before running each experiment by adding the initial
culture to clear sea water (<1 NTU). A HACH Turbid
meter 2100P was used to measure the turbidity prior to
and after the experiments. The turbidity level remained
within the desired level (low (2–3±0.5 NTU), medium
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(7–9±0.5 NTU) and high (13–15±0.5 NTU)) during the
experiment.

Experimental trials were carried out in a square shape
(100×100×100 cm) plastic aquarium during day time
(10:00–14:00) under natural light conditions. The bot-
tom of the aquarium was filled with 5 cm of gravel sand
and divided into two halves; one half treated as vegetat-
ed habitat (artificial seagrass grid) and the other half
as open habitat. Before each trial the aquarium was
filled with turbid water (depth=20 cm) from one of the
three turbidity levels and then fixed with an artificial
seagrass grid with one of the three shoot densities. We
used artificial eelgrass in the form of polypropylene
deep green ribbons (Width × Height: 0.5 cm×15 cm)
tied to a plastic grid. The grid covered half of the tank
during the trial and contained three different shoot den-
sities of green ribbons (100, 400 and 800 shoot/m2).
Polypropylene ribbon is a good mimic of eelgrass
Zostera marina and has been previously used in several
predation and habitat complexity experiments (James
and Heck 1994; Boström and Mattila 1999; Boström
and Bonsdorff 2000). Similar shoot densities also have
been used in several habitat complexity related studies
(Boström and Bonsdorff 2000). We chose only one type
of artificial eel grass leaf morphology to minimize prob-
lems with interpretation (Edger and Robertson 1992).
Zostera marina forms distinct patches of eelgrass in
coastal areas of the Baltic Sea. Eelgrass sites in the
archipelago region of Finland vary in terms of patch
size (1–75m2), shoot density (50–500 shoots/m2), shoot
length (20–100 cm) and biomass (10–32.1 g ash-free
dry weight/m2) (Lappalainen and Hällfors 1977).

In each trial, 20 female three-spined sticklebacks
(mean ± S.E. = 6.20±0.03 cm FL) were released ran-
domly in either open or in vegetated area and allowed to
roam around the aquarium for 10 min. One perch (14.5±
0.5 cm FL) was introduced after 10 min and allowed to
move around the aquarium with sticklebacks for an-
other 10 min. The perch was released in the middle of
the two habitats by slowly lowering the animal into the
experimental area from a small container of mesocosm
water. This technique ensured the experimenters did not
disturb sticklebacks during the predator introduction. A
video camera was suspended above the aquaria and
recorded the whole trial (20 min), monitoring move-
ments and habitat selection of the sticklebacks and soli-
tary perch. The experimental zone was covered with
black opaque plastic to minimize the outside disturbance
and glare during experiments. All treatments (three

turbidity levels×three vegetation densities over predator
presence/absence) were completed over the course of a
single day and replicated 7 times (7 days of filming).
Each individual prey and predator fish was introduced to
a randomly assigned experimental treatment at most
once per experiment day to minimize potential learning
or acclimation effects. At the end of each trial, a divider
was lowered between the two habitats to recapture
sticklebacks and confirm habitat choice at the final
minutes of video. All experimental fishes were released
to their natural habitat after completion of the
experiments.

Video analyses

Over each 20-min trial (10 min in absence/presence of
predator) we counted the number of sticklebacks in
vegetated (sheltered) and open habitat, as well as the
location of the predatory fish, at 1-min intervals. We
then averaged the number of sticklebacks in sheltered
and open habitats in the absence/presence of a predator.
To assess the potential impacts of predatory perch on
stickleback activity levels, we monitored the number of
times sticklebacks shifted between sheltered and open
habitats before and after the predator introduction. To
account for the disturbance associated with introducing
the perch to the experimental mesocosm, we did not
include shifts associated with risk period until 1 min
after the predator addition. No sticklebacks were active-
ly consumed by perch predators during experimental
trials.

Two-way repeated measures analyses of variance
(ANOVA) were run to examine the influence of turbid-
ity, vegetation density and their interaction effects on
stickleback antipredator response (i.e., change in distri-
bution after predator addition). In this design, we used
our two observation periods (before/after predator intro-
duction) as the repeated measure since wemonitored the
distribution of the same individuals over time.
Environmental effects on activity levels (number of
movements between habitats) during the two observa-
tion periods were similarly tested using separate paired
t-tests for each habitat complexity and turbidity treat-
ment. Because habitat use data were all proportional, all
values were arc-sine square-root transformed to better
meet the assumptions of ANOVAs (Underwood 1997;
Zar 2010). Tukey’s post-hoc tests were used to deter-
mine the source of variation within each significant
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effect (α ≤0.05). Statistical analyses were conducted
using SYSTAT 11.0 (SPSS, Inc.).

Results

Prior the introduction of the predator, stickleback habitat
preference varied greatly among turbidity levels (Fig. 1).
After the predator was added to the mesocosm (i.e.,
minute 11), a strong pulse of sticklebacks was observed
into the sheltered habitat, particularly at low turbidity.
Stickleback proportions in sheltered habitat then de-
creased with time (11–20 min) at low and medium
turbidity levels (Fig. 1a, b), but appeared to remain
constant at the high turbidity level (Fig. 1c). On average,

preference for sheltered habitat was lowest at low tur-
bidity levels, whether the predator was present or absent.

Without accounting for predator introductions, tur-
bidity significantly influenced stickleback distribution
behavior (Two-way ANOVA: F2,54=8.929; P<0.0001;
Table 1a) while vegetation density did not (Two-way
ANOVA: F2,54=1.293; P=0.283, Table 1a). With all
vegetation densities pooled, significantly greater pro-
portions of sticklebacks were observed in vegetated
habitat at high (m=0.839±0.019 S.E.) and medium
(m=0.798±0.026 S.E.) turbidity than low turbidity
(m=0.659±0.035 S.E.) (Tukey’s test, P<0.05), al-
though high and medium turbidity levels were not sig-
nificantly different from one another (Tukey’s test, P=
0.545). The predator introduction significantly influ-
enced stickleback sheltered habitat use (Repeated
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Fig. 1 Proportion of sticklebacks
in the sheltered habitat (mean ±
1SE) under different shoot
densities: a low, b medium, and c
high. Turbidity levels are
represented by colour gradation:
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Measures ANOVA: F1,54 = 132.395; P<0.0001,
Table 1b); predator presence caused a significantly
higher proportion of sticklebacks to move into sheltered
habitat (m=0.838±0.016 S.E.) than predator absence
(m=0.693±0.016 S.E.). However, this predator effect
interacted with vegetation density at a marginally sig-
nificant level (F2,54=2.852, P=0.066; Table 1b).
Subsequent visual inspection of interaction plots
showed a trend of increased sheltered habitat use with
higher densities of vegetation. To better identify the
source of variation in the interaction, separate paired t-
tests were conducted comparing mean distribution be-
tween control and risk periods for the three vegetation
densities. We found the greatest difference occurred at
high densities (t=−7.957; P<0.001), followed by medi-
um (t=−7.101;P<0.001) and low (t=−4.888; P<0.001)
densities (Fig. 2). The interaction between observation
period (before and after predator introduction) and tur-
bidity was not significant (RepeatedMeasures ANOVA:
F2, 54=0.926, P=0.402; Table 1b).

Stickleback activity levels were generally lower after
predator introductions when compared to control pe-
riods for all combinations of turbidity and shoot density
levels (Fig. 3). However, repeated measures ANOVAs
found that stickleback activity levels were dependent on
both turbidity and shoot density levels (Table 2).
Stickleback activity was significantly reduced at high
shoot density for low turbidity (F1,13=7.231; P<0.05),
medium shoot density for medium turbidity (F1,13=
9.775; P<0.05), and medium (F1,13=15.346; P<0.01)
and high (F1,13=8.361; P<0.05) shoot densities for high
turbidity. Despite a trend towards lowered activity levels
after predator introductions, the low shoot density did

not significantly reduce stickleback activity at any tur-
bidity level.

Discussion

Our mesocosm experiments confirmed stickleback pref-
erence of vegetated over open space habitats as stickle-
backs aggregated in sheltered, vegetated habitat even in
the absence of a predator (Fig. 1). The adherence to this
type of habitat reflects this species’ affinity to structur-
ally complex environments in the wild; in natural con-
ditions, sticklebacks are generally encountered over
seagrass (e.g. Zostera marina) or rock weed (Fucus,
Ascophyllum sp.) where they feed on crustaceans, insect
larvae, small fish fry, fish eggs, and other small prey
(Wootton 1976). As such, preference for sheltered areas
by this naturally seagrass-associated species was an-
ticipated in these experiments regardless of predator
presence.

Several studies emphasize the importance of habitat
complexity and its role in governing predator–prey in-
teractions (Heck and Thomson 1981; Robertson 1984;
Nelson and Bonsdorff 1990). Although we observed
general use of sheltered habitat across all treatments in
this experiment, sticklebacks responded to predator in-
troductions by significantly increasing their use of the
vegetated area and generally reducing overall activity
levels. We attribute the increased use of sheltered habitat
as an antipredator strategy by the sticklebacks, since a
multitude of studies indicate the foraging efficiency of
predators is significantly reduced in these seagrass hab-
itats (Orth et al. 1984; Heck and Crowder 1991; Heck

Table 1 Results from repeated
measures ANOVA on the impact
of Vegetation Density and Tur-
bidity on stickleback distribution
based on 10 min mean distribu-
tions before and after predator in-
troduction (observation period =
obs. period). Results are shown
for between- (a) and within-sub-
jects (b) effects. Items in bold
represent significant values
(P<0.1)

Source SS df MS F P

a - Between subjects

Vegetation density 0.155 2 0.077 1.293 0.283

Turbidity 1.069 2 0.534 8.929 <0.0001

Vegetation density × Turbidity 0.466 4 0.116 1.945 0.116

Error 3.232 54 0.06

b - Within subjects

Obs. Period 1.178 1 1.178 132.395 <0.0001

Obs. Period × Vegetation density 0.051 2 0.025 2.852 0.066

Obs. Period × Turbidity 0.016 2 0.008 0.926 0.402

Obs. Period × Vegetation density × Turbidity 0.034 4 0.008 0.954 0.44

Error 0.48 54 0.009
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et al. 2003; Heck and Orth 2006). Although sticklebacks
significantly increased shelter use under predation risk
at all vegetation densities, the noticeably greater use at
higher shoot densities (Fig. 2) suggests these prey were
sensitive to habitat availability. At lower vegetation
densities (i.e., habitat limiting conditions), protection
may be compromised as individuals crowd the less
abundant shoots of seagrass. As such, sticklebacks
remained active around the mesocosm during low den-
sity treatments in the presence of the perch, regardless of
turbidity level. These findings indicate that higher shoot
densities (>400 shoots/m2) may play an important role
in reducing predation risk of three-spine sticklebacks,
yet comparable densities have become increasingly rare
in the Baltic Sea.

Interestingly, Snickars et al. (2004) observed shel-
tered habitat use of 0+ perch decreased with increasing
density of vegetation in clear conditions (1–4 NTU).
They suspected that, in more complex environments,
space was too reduced and may have negatively impact-
ed prey maneuverability (sensu Bartholomew et al.
2000). The disparity in complex habitat use between
sticklebacks and perch may be related to structural dif-
ferences between rigid wooden dowels and more flexi-
ble polypropylene ribbon, or due to behavioral differ-
ences between the two species.

As a schooling and social species, three-spined stick-
lebacks may more effectively communicate predation
threats to conspecifics than more solitary perch
(Frommen et al. 2007). Schooling behavior is known

*

*
*

Fig. 2 Proportional shelter use of
sticklebacks (mean ± 1SE) at
three different shoot densities
(low (LD), medium (MD) and
high (HD)) before (open bars)
and after (dark bars) predator
introduction to the mesocosm.
Asterisks (*) indicate significant
differences in shelter use between
before and after predator
introduction (Paired t-test,
P<0.001)

Fig. 3 Activity levels of
sticklebacks (proportion of
individuals shifting habitats
during a 10-min period, mean ±
1SE) before (open bars) and after
(shaded bars) the predator
introduction to the mesocosm.
Graphs in different panels refer to
different turbidity levels: low
(left) panel) to high (right panel)
turbidity. Asterisks indicate
significant differences in activity
before and after predator
introduction (Paired t-test,
*P<0.05, **P<0.01)
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to increase foraging efficiency in a wide variety of taxa,
but may also reduce mortality of prey when confronted
with predators. Traveling around the experimental
mesocosm as a school may have thus reduced stickle-
back sensitivity to predator introductions.

Past studies show that increased turbidity could be
detrimental to prey due to a reduced reaction distance
relative to the predator (Vinyard and O’Brien 1976;
Hecht and van der Linger 1992; Miner and Stein
1996). While turbidity significantly influenced stickle-
back distribution behavior in the absence of a predator,
we found no impact of this factor on shelter use with a
predator present. Contrastingly, Snickars et al. (2004)
work on 0+ perch found that, under predation risk, these
fish used significantly less vegetated habitat at higher
turbidity levels. This finding suggested that perch

Table 2 Results from separate paired t-tests on the impact of
vegetation density and turbidity on stickleback activity levels
before and after predator introduction

Turbidity Density SS MS F P

LT LD 0.006 0.006 0.457 0.524

LT MD 0.108 0.108 3.631 0.105

LT HD 0.059 0.059 7.231 0.036

MT LD 0.023 0.023 1.223 0.311

MT MD 0.057 0.057 9.775 0.020

MT HD 0.031 0.031 4.753 0.072

HT LD 0.019 0.019 2.755 0.158

HT MD 0.091 0.091 15.346 0.008

HT HD 0.042 0.042 8.361 0.028

Table 3 Summary table of select predator–prey studies that
examined the effect of turbidity and habitat complexity on a
variety of parameters (1 – Survival: Gregory and Levings, 1996;
2 – Survival and growth: Skov et al. 2002; 3 – Antipredator
behaviour: Snickars et al. 2004; 4 – Foraging and prey selection:

Stuart-Smith et al. 2004, 5 – Antipredator behaviour: Present
Study). Under findings, we show the conclusions based on the
turbidity effect (T), vegetation (V) and, in some cases, the effect of
turbidity and vegetation interaction (TxV)

Study Prey Predator Turbidity type Vegetation
type

Findings

Levels (NTU) Densities
(m−2)

1 Oncorhyncus
tshawytscha

Oncorhynchus
clarkii

Resuspended
sediment

Polypropylene
rope

T: Generally not significant

Oncorhyncus keta 0.5–2.4 NTU 1000 V: Higher survival
Oncorhyncus nerka 12–87 NTU

2 Esox lucius Esox lucius Copper
Chlorophyllin

Phragmites
mimics

T: No effect on survival/growth

0, 20 cm secchi
depth

Artificial ivy V: No effect on growth, slight
effect on survivaln/a

3 Perca fluviatilis Esox lucius Clay Phragmites
mimics

T: Greater shelter use at low levels

1–4 NTU 97 V: Density effect in clear water, not turbid

12–16 NTU 383 TxV: Reduced shelter use with increased

25–36 NTU 960 shoot density at low turbidity

4 Austrochiltonia
australis

Galaxias auratus Various Material Macrophytes T: No effect on foraging, prey selection

Daphnia carinata 0 NTU n/a V: Influences prey selection
50 NTU

100 NTU

5 Gasterosteus
aculeatus

Perca fluviatilis Unicellular Algae Zostera
mimics

T: Greater shelter use at high levels, no
effect on antipredator behaviour

2-3 NTU 100 V: Greater shelter use at high levels
under predation risk

7–9 NTU 400 TxV: No effect

13–15 NTU 800
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antipredator behavior may be reduced at higher turbidity
levels (Snickars et al. 2004). The lack of predator influ-
ence with turbidity on sticklebacks may be explained by
the prey having already been situated in this habitat prior
to predator introduction, and therefore sticklebacks were
pre-distributed in a protective environment. Thus, unlike
perch in Snickars et al. (2004), sticklebacks may not
have perceived the turbid environment as shelter from
predator presence and instead utilized available habitat
as a mechanism to further reduce predation risk. At
higher turbidity levels (>5 NTU), sticklebacks may rec-
ognize greater predation risk due to the inability to
register the location of a predator until within close
proximity. Thus, in a deteriorated visual environment,
sticklebacks may quickly adhere to available sheltered
habitat and reduce activity levels to decrease their risk of
being encountered. Despite being at the highest turbidity
level (i.e., highest hypothesized cover), sticklebacks in
this environment more significantly reduced their activ-
ity levels when compared to other turbidities. In rela-
tively clear conditions (0–3 NTU), prey have increased
visual field and may more adeptly perceive predation
risk. As a result of this recognition of heightened “secu-
rity,” prey may be less threatened to move around freely
in low turbidity conditions. Thus, while turbidity may
not always directly affect the antipredator behavior of
prey, the overall response of prey to this property (i.e.,
increased use of complex habitats and reduced overall
activity) may represent an adaptation to ensure survival
when predators arrive in that habitat.

Some studies of fish habitat preference have counted
the number of individuals in a particular habitat after a
pre-determined time (Snickars et al. 2004). In essence,
this technique represents a single “snapshot” of prey
distribution, without an appreciation of the various
movements that may occur throughout the trial run. In
this experiment, we utilized video footage to grab mul-
tiple minute-by-minute observations of stickleback hab-
itat choice behavior over a variety of environmental
conditions. Indeed, such a method for understanding
habitat selection is limited by the conditions as very
turbid water can cause issues with video analysis. It
should also be noted that we used a relatively low range
of turbidity levels (2 NTU – 17 NTU) and a reduced
time scale compared with other studies (Table 3).
Despite this reduced range, we still observed significant
changes in prey distribution and activity levels with a
small change in algal turbidity. Our study therefore
demonstrates that relatively minute changes in turbidity

may have significant impacts on antipredator capacity of
fishes, which should be strongly considered in future
studies of these taxa.

Conclusion

Behavioral decisions by animals are made based on both
energy intake and predation risk. In this study, we only
focused on antipredator behavior and found an effect of
vegetation density and not turbidity, though we recog-
nize turbidity influences overall prey distribution and
activity levels and thus may indirectly reduce risk. For a
more comprehensive understanding of the influence of
various anthropogenically-induced environmental
changes on three-spined stickleback, future work should
simultaneously examine how foraging behavior and
habitat choice are influenced by turbidity, habitat com-
plexity and predator presence. For example, similar
experiments to the one herein could include food re-
sources for prey animals. This would examine tradeoffs
between predation risk and energy acquisition, and build
a more comprehensive understanding of the influence of
various environmental conditions on prey survival.
Integrative and experimental approaches like these
would likely enhance our ability to estimate the impacts
of anthropogenic inputs on complex ecological interac-
tions of the Baltic Sea.
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