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Abstract Coastal shark abundance and community struc-
ture was quantified across 10 geographic areas in the
northeastern Gulf of Mexico using fishery-independent
gillnet data from 2003 to 2011. A total of 3,205 sets were
made in which 14,244 carcharhiniform sharks, primarily
juveniles, were caught comprising 11 species from three
families. The three most abundant species, Atlantic
sharpnose Rhizoprionodon terraenovae, bonnethead
Sphyrna tiburo and blacktip sharks Carcharhinus
limbatus, were consistently captured over all sampling

sites regardless of environmental conditions; however,
some species (e.g., bull C. leucas, blacknose
C. acrontous, finetooth C. isodon, and sandbar sharks
C. plumbeus) were restricted to a specific area or a range
of areas. Two-way crossed analysis of similarity
(ANOSIM) found geographic area to significantly influ-
ence shark species-life stage assemblages while season did
not. Resemblance matrices between environmental data
and shark community assemblage found the two were
weakly but significantly correlated, with the combination
of salinity and water clarity producing the highest
Spearman rank correlation value. Species diversity varied
by geographic area, but was generally highest in areas with
the greatest amount of fresh and saltwater fluctuations. Our
results suggest that estuarine conditions adjacent to river
mouths may affect juvenile shark assemblages across sim-
ilar latitudes and some areas of the northeastern Gulf of
Mexico may be considered important nursery areas for
select shark species. This study provides important insight
into the habitat use of a variety of coastal shark species and
can be used to better manage these species through the
determination of critical habitat.
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Introduction

The identification of essential habitats for marine spe-
cies is critical to proper management of populations.
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Many fishes use coastal and estuarine systems as nurs-
ery areas due to their relatively high productivity and
shallow, protected waters (Beck et al. 2001). Several
species of sharks are known to use discrete nursery
habitats (e.g., Grubbs and Musick 2007), but the role
of nurseries for some taxa, especially small coastal
sharks, has been questioned (Heupel et al. 2007; Knip
et al. 2010). Although some information regarding hab-
itat use and delineation of nursery areas for sharks in the
Gulf of Mexico is available (Hueter and Tyminski 2007;
Parsons and Hoffmayer 2007; Drymon et al. 2010,
2013; Froeschke et al. 2010a, b), few studies have
investigated broad-scale regional differences in habitat
use of young sharks (i.e., neonates, young-of-the-year,
and juveniles) with long-term, standardized sampling.
As a result, a holistic understanding of what drives shark
distribution patterns of young sharks is still lacking from
the Gulf of Mexico.

Although the species composition of sharks that oc-
cur in coastal waters is diverse, descriptions of
distribution and habitat use tend to be generalized;
distribution has been broadly outlined in which
individuals are segregated into different habitats by
ontogeny. Originally, Springer (1967) proposed that
young sharks are born in bays and estuaries, remain
there until they reach maturity, and then enter the adult
population in offshore waters; adults remain off-
shore except when they move inshore to give birth
and mate. However, many populations of sharks
do not fit this hypothetical segregation (Knip et al.
2010; see Grubbs 2010 for a review) and under-
standing differences in distribution and habitat use
between shark species and life stages can provide
information necessary to conserve important habitats
and manage shark populations.

Along the northeast Gulf of Mexico coastline there
are many bays and inlets that range from near-oceanic
conditions to shallow-brackish and estuarine systems.
Coastal habitat varies from areas highly influenced by
anthropogenic activities to pristine and relatively undis-
turbed areas (e.g., St. Vincent Island National Wildlife
Refuge). Many of these areas are occupied by a diverse
shark assemblage, but the overall large-scale distribu-
tion and abundance of these species across bays and
estuaries has not been quantified. Herein, we use a
coordinated long-term sampling collaborative to inves-
tigate the distribution and abundance of coastal sharks
and quantify coastal shark community structure in the
northeastern Gulf of Mexico.

Methods

Gear and set specifications

The survey was modeled after methods developed by
Carlson and Brusher (1999). A monofilament gillnet
consisting of six different stretched-mesh size panels
was used for sampling in all areas by all institutions.
Stretched-mesh sizes ranged from 7.6 (3.0”) to
14.0 cm (5.5”) in steps of 1.3 cm (0.5”). Each panel
was 3.0 m (10 ft) deep and 30.5 m (100 ft) long.
Panel specifics can be found in Baremore et al.
(2012). The six panels were strung together and
fished as a single gear (i.e., set). The survey was
conducted monthly April – October in coastal bays,
estuaries, and around barrier islands (out to three nauti-
cal miles) from 2003 to 2011, covering more than
550 km of coastline (Fig. 1).

Gillnet sets were chosen randomly and the gear was
fished either perpendicular to shore or with the wind. Set
soak time was defined from the time the gear entered the
water to the time the gear was removed completely from
the water. Haul back typically started 0.5–1.0 h after the
gear first entered the water. After haul back, the gear was
moved to a different location, beginning a new set. All
gillnet sets were made during daylight hours
(07:00–18:00). For each set, mid-water temperature
(°C), salinity, and dissolved oxygen (mg l−1) were
recorded. Average depth (m) was calculated using
gear start and end points recorded from the ves-
sel’s depth finder, and water clarity (depth of the
photic zone, cm) was measured by secchi disc. At
times, not all environmental parameters were re-
corded due to logistics.

Not all institutions sampled in all years due to
funding. The two longest running data sets were from
the NOAA National Marine Fisheries Service Panama
City Laboratory (St. Andrew Bay to Apalachicola Bay,
FL; 2003–2011) and University of Southern Mississippi
Gulf Coast Research Laboratory (Mississippi Sound
and sets made outside the Mississippi barrier islands;
2003–2009). The remaining datasets were: the Florida
Museum of Natural History at the University of Florida
(Suwannee Sound to Waccasassa Bay, FL; 2007–2011),
the Dauphin Island Sea Laboratory (Mobile Bay and
Alabama and sets around western Florida barrier
islands; 2007–2011), and the Florida State University
Coastal and Marine Laboratory (St. George Sound to
Anclote Key, FL; 2008–2011).
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Geographic areas

To better assess species composition by area, we combined
data sets into 10 geographic areas based on apparent
zoogeographical breaks. Gillnet sets around barrier islands

in Mississippi, Alabama, and the western-most portion of
Florida were combined with those inside (or back-side) of
barrier islands and those outside (or Gulf of Mexico-side)
of barrier islands whereas Mississippi Sound and Mobile
Bay were treated as distinct areas (Fig. 1a). In northwest

Fig. 1 TheGulf ofMexico east of theMississippi River with lines
designating regions sampled a) western (coastal Mississippi, Ala-
bama, and the eastern-most portion of the Florida panhandle), b)

northern (St. Andrew Bay to Apalachicola Bay, Florida), and c)
eastern (Apalachee Bay to Anclote Key, Florida)
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Florida, sets in St. Andrew Bay, Crooked Island Sound,
and St. JosephBaywere combined (hereafter referred to as
SAB-CIS-SJB complex) because habitat within these bays
is relatively consistent (mixed seagrass beds, sand flats,
and muddy bottom). The Gulf of Mexico-side of St.
Vincent Island was considered a distinct area because all
sampling was conducted in the Gulf ofMexico outside the
barrier island system of the Apalachicola River.
Apalachicola Bay (including St. George Sound) was treat-
ed as a distinct area because of the influence of the
Apalachicola River (Fig. 1b). For the most eastern portion
of the sampling region we designated areas as follows:
Apalachee Bay (from St. Mark’s River to Horseshoe
Beach) due to the influence of St. Mark’s River,
Suwannee Sound (from Horseshoe Beach to Cedar Key)
due to the influence of the Suwannee River, and sets from
Cedar Key to Anclote Key (including Waccasassa Bay,
Crystal River, and Homosassa Bay) (Fig. 1c).

Data collection

Captured sharks were measured (pre-caudal, PCL; fork,
FL; total, TL; and stretched total length, STL, in cm),
sexed, and assigned a life stage. Neonates were defined as
having an open umbilical scar and young-of-the-year
(YOY) were defined as having a closed, but visible,
umbilical scar. Juveniles and adults were defined based
on macro-analysis or published accounts of 50 % size-at-
maturity (Branstetter 1987; Branstetter and Stiles 1987;
Carlson et al. 1999; Carlson et al. 2003; Carlson and
Baremore 2003; Lombardi-Carlson et al. 2003; Carlson
and Baremore 2005; Carlson et al. 2007; Piercy et al.
2007; Sulikowski et al. 2007; Baremore and Hale 2012;
Baremore and Passeroti 2013; Hoffmayer et al. 2013).
All length measurements were standardized to cm FL.
When FL was not provided, we used length-length equa-
tions to calculate FL from PCL, TL, or STL (Appendix
1). Sharks not assigned a sex or length in the field were
counted as “undetermined life stage” (n=306) and omit-
ted from abundance, mean size, and sex ratio analyses.
Likewise, species with a total sample size less than 100
overall were omitted from analyses.

Data analysis

Catch-per-unit-effort (CPUE) was used to assess abun-
dance of each species-life stage in each geographic area.
CPUE was defined as the number of a species-life stage
caught divided by soak time (standardized to gillnet

hour). We tested the hypothesis that sex ratios were
1:1 within a geographic area using a chi-square test
(Zar 1999a). Species with a sample size less than five
individuals per geographic area were omitted from sex
ratio analyses. Differences in size by major area were
examined with analysis of variance followed with a
Tukey’s HSD post-hoc test. Size at birth and timing of
parturition were examined for each geographic area by
documenting the fork length and presence of neonates.
To evaluate species diversity among geographic areas,
we applied the Shannon-Wiener function (Shannon
Index of Diversity, H’) as described in Zar (1999b): H
′=∑i=1

s pilnpi, where s=number of species, and pi=pro-
portion of total sample belonging to the ith species.
When the number of species is>5, H’ ranges 0–4.6,
using the natural log. Avalue near 0 would indicate that
every individual in the sample is the same species. A
value near 4.6 would indicate that the number of indi-
viduals is evenly distributed between all the species.

We also used multivariate methods to test for differ-
ences in shark community structure by geographic area
and season. In this analysis we tested the null hypothesis
that there were no spatial (geographic area) or seasonal
(spring=April, May; summer=June, July, August; Fall=
September, October) differences in the shark communities
across the northeast Gulf of Mexico where each variable
represented a species-life stage, with the metric being
CPUE for a given gillnet set. Given our interest in com-
paring communities across space, we limited our multivar-
iate analyses to data collected from 2007 to 2011, when all
regions were being sampled simultaneously. CPUE for all
sets with positive catch (n=781) were 4th-root trans-
formed and used to develop a Bray-Curtis similarity ma-
trix. We conducted a two-way crossed analysis of similar-
ity (ANOSIM) on the similaritymatrix to assess the effects
of both space (i.e.,geographic area) and season on shark
community and life-stage structure. ANOSIMproduces an
R statistic where values of 0 indicate that groups are not
distinct from the entire dataset, while values of 1 indicate
that groups of samples are completely distinct from each
other; the p-value indicates the significance of this statistic.
Significant factors from the ANOSIM were further ana-
lyzed using pairwise comparisons. To examine the
species-life stages most responsible for the separation
among factors we used similarity of percent contribution
(SIMPER) analyses on significant comparisons (Clarke
1993).

Because our data set included samples from a wide
range of environmental regimes across the northern and
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eastern Gulf of Mexico (means, standard deviations, and
ranges of abiotic variables in each geographic area are
presented in Appendix 2) we followed our ANOSIM and
SIMPER with additional analyses to identify potential
environmental drivers in the variation of shark assem-
blages. For these analyses, we only used biological data
from gillnet sets where all five environmental parameters
(temperature, salinity, water clarity, depth, and dissolved
oxygen) were recorded (n=426). Environmental data
were normalized and used to build a Euclidean
distance-based resemblance matrix. These data were ex-
posed to a non-parametric form of a Mantel test,
RELATE, to assess agreement in the multivariate pattern
between the biological and environmental resemblance
matrices using a suite of random permutations. Following
RELATE, we used a BESTanalysis (i.e., Bio-env) to find
the best match between multivariate among sample pat-
terns of shark assemblages and the environmental data
recorded with gillnet sets (i.e., highest Spearman rank
correlation value). Finally, principal components analysis
was conducted on the environmental data to visually
assess sample dispersion and environmental drivers of
the community assemblages. All community and multi-
variate analyses were conducted using Primer© Version
6.0 (Clarke and Gorley 2006).

Results

A total of 3,205 gillnet sets were made in which 14,244
carcharhiniform sharks were caught, comprising 11 spe-
cies from three families: Carcharhinidae, Sphyrnidae,
and Triakidae. Carcharhinids dominated the catch, ac-
counting for seven of the 11 species and 76.5 % of the
total number caught. Atlantic sharpnose shark
(Rhizoprionodon terraenovae) was the most abundant
species overall, accounting for 51 % of the total catch
(n=7,191). Bonnethead (Sphyrna tiburo) and blacktip
(Carcharhinus limbatus) sharks accounted for 18% (n=
2,602) and 15 % (n=2,122) of the remaining catch,
respectively. Other species included: finetooth
(C. isodon; 5 %, n=728), scalloped hammerhead
(S. lewini; 4.8 %, n=677), and spinner (C. brevipinna;
3.8 %, n=551) sharks. Blacknose (C. acronotus) and
bull (C. leucas) sharks were not often encountered and
represented 1.4 % (n=196) and<1 % (n=101) of the
total catch, respectively. Sandbar (C. plumbeus), Florida
smoothhound (Mustelus norris i ) , and great

hammerhead (S. mokarran) sharks were rarely encoun-
tered (0.5 %, n=76 combined total).

There was a general lack of adult sharks in the dataset
except for smaller coastal species such as Atlantic
sharpnose, blacknose, bonnethead, and finetooth sharks.
Immature animals accounted for 68 % (n=9,984) of the
total catch. Of those, 62 % (n=6,358) were classified as
juvenile, 23.5 % (n=3,431) as YOY, and 1.3 % (n=195)
as neonate.

Sex ratios

Sex ratios for Atlantic sharpnose shark were significant-
ly different from parity in every geographic area where
they were collected; males were more abundant than
females (p<0.01). In sets made inside the barrier islands
and on the Gulf of Mexico-side of St. Vincent Island,
blacktip shark females were more abundant (p<0.05;
Appendices 3 and 8). Male bonnethead sharks were
more abundant in the SAB-CIS-SJB complex,
Apalachee Bay, Suwannee Sound, and Cedar Key to
Anclote Key (p<0.01 and p<0.05, respectively;
Appendices 7, 10, 11 and 12) and female bonnethead
sharks were more abundant in Apalachicola Bay
(p<0.001; Appendix 9). In the SAB-CIS-SJB complex,
there were more male scalloped hammerheads than
female (p<0.05; Appendix 7).

Length-related patterns of occurrence

Mean size of the three most abundant species differed
across geographic areas (Fig. 2). Atlantic sharpnose sharks
were smallest in Mississippi Sound (mean FL 46.6 cm)
and largest in Suwannee Sound (mean FL 66.7 cm).
Bonnethead sharks were smallest in the SAB-CIS-SJB
complex (mean FL 55.4 cm) and, while only five were
collected, largest outside the AL-FL barrier islands (mean
FL 74.9 cm). Blacktip sharks were smallest in Apalachee
Bay (mean 48.7 cm FL) and largest in the SAB-CIS-SJB
complex (mean FL 78.8 cm).

Lengths of species caught in lower abundances also
differed across regions, but showed no discernible pat-
tern (Fig. 3). Finetooth sharks were smallest in Mobile
Bay (mean FL 46.1 cm) and largest in the SAB-CIS-SJB
(mean FL 91.1). While only seven were collected,
scalloped hammerhead sharks were larger from Cedar
Key to Anclote Key (mean FL 100.4 cm); in all other
areas, FL ranged 43.2–50.4 cm. Spinner sharks were
smaller in shallow, protected areas like Apalachicola
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Bay (mean FL 54.0 cm) and larger in more open waters
like outside the AL-FL barrier islands (mean FL
97.8 cm). Blacknose sharks were largest on the Gulf of
Mexico-side of St. Vincent Island (mean FL 90.9 cm).
Bull sharks were smaller in Mississippi and Alabama
(e.g., Mobile Bay, mean FL 67.9 cm) and larger in
Florida (e.g., Apalachicola Bay, mean FL 180.5 cm).

Parturition

Over 3,400 YOY were collected, but only 195 of those
were classified as neonate at time of capture. Neonates
were collected in eight of 10 geographic areas (exclud-
ing the outside theMS-AL-FL barrier islands, Appendix

6, and Apalachee Bay, Appendix 10). Neonates were
observed in all species. Neonates of larger species, like
bull and sandbar shark (range 59.7–70.5 and 43.0–
59.0 cm FL, respectively), were relatively more abun-
dant than those of smaller species, like Atlantic
sharpnose and bonnethead sharks (mean 23.0–32.0
and 20.5–35.0 cm FL, respectively). Neonate scalloped
hammerhead shark were also relatively small (31.5–
41.0 cm FL), but were observed often in the dataset.

Species diversity

Species diversity varied by geographic area, but was
generally highest in areas with the greatest amount of

Fig. 2 Mean fork lengths (error
bars = standard deviation) of the
three most commonly caught
species a) Atlantic sharpnose, R.
terraenovae, b) bonnethead, S.
tiburo, and c) blacktip, C.
limbatus, sharks in each area from
west to east. Areas are
abbreviated as follows: IN (inside
the Mississippi, Alabama, and
Florida barrier islands), MS
(Mississippi Sound), MB (Mobile
Bay), OUT (Gulf of Mexico-side
of the Mississippi, Alabama, and
Florida barrier islands), SAB-
CIS-SJB (the St. Andrew Bay-
Crooked Island Sound-St. Joseph
Bay complex), SVI (the Gulf of
Mexico-side of St. Vincent Island,
Apalachicola Bay (Apalachicola),
Apalachee Bay from St. Mark’s
River to Horseshoe Beach
(Apalachee), Suwannee Sound
(SS, from Horseshoe Beach to
Cedar Key), and Cedar Key to
Anclote Key (CK-AK)
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fresh and saltwater fluctuations (e.g., barrier islands
around river mouths). The Gulf of Mexico-side of St.

Vincent Island had the highest species diversity (1.717;
Appendix 8) while Mobile Bay had the lowest (0.371;

Fig. 3 Mean fork lengths (error bars = standard deviation) of other
speices caught a) finetooth, C. isodon, b) scalloped hammerhead,
S. lewini, c) spinner, C. brevipinna, d) blacknose, C. acronotus,
and e) bull, C. leucas, sharks in each area from west to east. Areas
are abbreviated as follows: IN (inside the Mississippi, Alabama,
and Florida barrier islands), MS (Mississippi Sound), MB (Mobile
Bay), OUT (Gulf ofMexico-side of theMississippi, Alabama, and

Florida barrier islands), SAB-CIS-SJB (the St. Andrew Bay-
Crooked Island Sound-St. Joseph Bay complex), SVI (the Gulf
of Mexico-side of St. Vincent Island, Apalachicola Bay (Apalach-
icola), Apalachee Bay from St. Mark’s River to Horseshoe Beach
(Apalachee), Suwannee Sound (SS, from Horseshoe Beach to
Cedar Key), and Cedar Key to Anclote Key (CK-AK)
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Appendix 5). Outside the barrier islands was the second-
most diverse area (1.497; Appendix 6). Apalachicola
Bay and Mississippi Sound exhibited similar species
diversity (1.355 Appendix 9 and 1.337 Appendix 4,
respectively) as did inside the barrier islands (1.264;
Appendix 3) and the SAB-CIS-SJB complex (1.228;
Appendix 7). The three eastern-most areas also showed
similar diversity to each other (0.774 in Apalachee Bay,
1.108 in Suwannee Sound, and 1.120 in CK-AK;
Appendices 10, 11 and 12).

Similarities in community structure

Two-way crossed ANOSIM indicated geographic
area significantly influenced shark species-life
stage assemblages, though communities likely
shared common species across the study period
(R=0.198, p=0.001). Season, on the other hand,

had no discernible effect on shark assemblages
(R=0.005, p=0.393). Subsequent pairwise analyses
between geographic areas demonstrated high
among-area variability in shark communities and
life stages (39/45 significant pairwise compari-
sons). Further analysis of the pairwise comparisons
indicated that western area estuaries of Mobile
Bay, Mississippi Sound, and around the barrier
islands generally grouped separately from Florida
collection sites (Fig. 4). Apalachicola Bay,
Apalachee Bay, and Cedar Key to Anclote Key
were dominated by relatively high catches of adult
and juvenile Atlantic sharpnose sharks (Fig. 5g to
j). These adult Atlantic sharpnose shark catches off
Florida were statistically different from Mobile
Bay, Mississippi Sound, and the associated barrier
islands fringing these estuaries (Fig. 5a to d). The
Mobile Bay assemblage was characterized mainly

Fig. 3 (continued)
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by YOY bull sharks (Fig. 5c) and was significant-
ly distinct from most other areas in the study
region. Mississippi Sound waters (Fig. 5b) were
notably more abundant with YOY Atlantic
sharpnose sharks when compared to outer barrier
island habitats (Fig. 5d), Mobile Bay (Fig. 5c),
and most Florida estuaries (Fig. 5e to j). Catch
of adult bonnethead sharks separated Suwannee
Sound (Fig. 5i) from Mississippi Sound (Fig. 5b),
the barrier islands (Figs. 5a and d), as well as the
SAB-CIS-SJB complex and the Gulf of Mexico-
side of St. Vincent Island (Fig. 5e and f). The
Gulf of Mexico-side of St. Vincent Island
(Fig. 5f) was shown to have significantly higher
contributions of juvenile blacktip sharks than
Apalachee Bay (Fig. 5h) and locations along the
barrier islands (Fig. 5a, b and d).

Resemblance matrices between environmental da-
ta and the corresponding shark community assem-
blage exhibited weak yet statistically significant
agreement (RELATE test; ρ=0.175; p<0.001). A
subsequent BIO-ENV test identified the combina-
tion of salinity and water clarity produced the
highest Spearman rank correlation value (ρ=0.233)

among the possible combination of the five environ-
mental factors. While the correlation values were
relatively low (0.175–0.233), salinity was the sole
variable retained in the top 10 combinations of var-
iables (Appendix 13). PCA qualitatively confirmed
the above results as well as the ANOSIM result on a
spatial gradient in shark community assemblage pat-
terns (Fig. 6). Specifically, sample sites in Mobile
Bay and Mississippi Sound were characterized by
lower salinities and lower water clarity (Mississippi
Sound mean salinity 23.0±5.2, mean water clarity
92±35 cm; Mobile Bay mean salinity 10.6±7.6,
mean water clarity 77±40 cm) whereas waters in
Florida estuaries exhibited higher salinities and
higher water clarity (e.g., Gulf of Mexico-side of
St. Vincent Island mean salinity 32.0±2.6, mean
water clarity 146±82 cm).

Discussion

The coastal habitats along the Gulf of Mexico are
known to support a variety of early life stages of sharks
(see McCandless et al. 2007) and this is the first attempt
to quantify coastal shark community structure in the

Fig. 4 Non-metric multidimensional scaling (MDS) plot of
ANOSIM-derived pairwise differences in shark assemblages
among various regions. Clusters are overlain to depict the related-
ness in communities, with western areas (MS-AL) in on the left
side of the graph and eastern (i.e., FL) on the right. Areas are
abbreviated as follows: IN (inside the Mississippi, Alabama, and
Florida barrier islands), MS (Mississippi Sound), MB (Mobile

Bay), OUT (Gulf of Mexico-side of the Mississippi, Alabama,
and Florida barrier islands), SAB-CIS-SJB (the St. Andrew Bay-
Crooked Island Sound-St. Joseph Bay complex), SVI (the Gulf of
Mexico-side of St. Vincent Island, Apalachicola Bay (Apalachi-
cola), Apalachee Bay from St. Mark’s River to Horseshoe Beach
(Apalachee), Suwannee Sound (SS, from Horseshoe Beach to
Cedar Key), and Cedar Key to Anclote Key (CK-AK)
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northeastern Gulf of Mexico over a broad area. While
composition varied with area, Atlantic sharpnose,
bonnethead, and blacktip sharks were the dominant
species in all areas except Mobile Bay. This is not
surprising for Atlantic sharpnose and bonnethead sharks
given their relatively high lifetime fecundity, rapid
growth rate, and small size at maturity (Carlson and
Baremore 2003; Lombardi-Carlson et al. 2003;
Hoffmayer et al. 2013) as well as the availability of their
main prey items throughout the region (Bethea et al.
2004, 2006, 2007). These three species also dominate
coastal shark abundance studies in other areas such as
southwest Florida (Heithaus et al. 2007; Wiley and
Simpfendorfer 2007), Texas (Froeschke et al. 2010a),

South Carolina (Ulrich et al. 2007), Georgia (Belcher
and Jennings 2009), northeast Florida (McCallister et al.
2013), and the U.S. Virgin Islands (DeAngelis et al.
2008). Additionally, similar species are dominant in
catches in coastal northern Brazil (Yokota and Lessa
2006) and coastal Queensland, Australia (Taylor and
Bennett 2012). Thus, the shark assemblage we observed
appears to be consistent with subtropical and warm
temperate waters worldwide, emphasizing the adapta-
tions of these species to these types of coastal
environments.

There was a notable lack of adult female
Atlantic sharpnose sharks collected in coastal
areas; males significantly outnumbered females in

Fig. 5 Pie charts showing overall catch per unit effort (CPUE) for
shark species caught a) inside the Mississippi, Alabama, and
Florida barrier islands (IN), b) Mississippi Sound (MS), c) Mobile
Bay (MB), d) Gulf of Mexico-side of the Mississippi, Alabama,
and Florida barrier islands (OUT), e) the St. Andrew Bay-Crooked
Island Sound-St. Joseph Bay complex (SAB-CIS-SJB), f) the Gulf
of Mexico-side of St. Vincent Island (SVI), g) Apalachicola Bay
(Apalachicola), h) Apalachee Bay (Apalachee, from St. Mark’s

River to Horseshoe Beach), i) Suwannee Sound (SS, from Horse-
shoe Beach to Cedar Key), and j) Cedar Key to Anclote Key (CK-
AK, including Waccasassa Bay, Crystal River, and Homosassa
Bay). Stripes are adults (AD), solids are juveniles (JUV), and
dotted are young-of-the-year (YOY). The species color key is
listed alphabetical by abbreviated species epithet (e.g., Clim for
blacktip shark, Carcharhinus limbatus)

Environ Biol Fish



all areas sampled. Similarly, male bonnethead
sharks were dominant in most Florida estuaries
while adult females were largely found in the
Apalachicola River delta. While sexual segregation
is widespread among elasmobranchs (Springer
1967; Pratt and Carrier 2001), the distribution of
adult female Atlantic sharpnose and bonnethead
sharks could be related to higher energy demands
to support their higher productivity. Mature female
Atlantic sharpnose sharks are hypothesized to give
bir th outside coastal waters (Parsons and
Hoffmayer 2005; Drymon et al. 2010) with the
highest catch per unit effort around areas of the
Mississippi River delta (Pollack and Ingram 2013)
where primary production (i.e., chlorophyll-a con-
centrations) is highest (Drymon et al. 2013). The
Apalachicola River delta is a highly productive
estuary (Livingston 1984) and adult female

bonnethead sharks could be segregating there for
similar reasons.

Young-of-the-year and neonate sharks were col-
lected in all areas of the northeast Gulf of Mexico.
With the possible exception of Atlantic sharpnose
shark in Mississippi Sound, no particular area was
of higher importance for pupping than the others.
However, compared with other life history stages,
the abundance of neonates was lowest. As the
majority of pupping occurs in late spring/early
summer, it is unlikely that our sampling occurred
at times of the year outside parturition. The lack
of neonates could be due to the lack of classifica-
tion during data collection (J Imhoff and RD
Grubbs, pers. comm.) as the umbilical scar heals
relatively quickly (Castro 2009); thus, some indi-
viduals may have been classified as young-of-the-
year rather than neonates. Gear selectivity may

Fig. 6 Principal Components Analysis (PCA) plot of environ-
mental data from various regions sampled with gillnets in the
northeastern Gulf of Mexico, 2007-2011. Data are shown for
sets where all five environmental parameters (temperature =
TEMP, salinity = SAL, depth, water clarity = TURB, and
dissolved oxygen = DO) were recorded. PC1 (32.7%) and
PC2 (27.7%) are plotted against one another with the 5 base
variable vectors superimposed. Areas are abbreviated as fol-
lows: IN (inside the Mississippi, Alabama, and Florida barrier

islands), MS (Mississippi Sound), MB (Mobile Bay), OUT
(Gulf of Mexico-side of the Mississippi, Alabama, and Florida
barrier islands), SAB-CIS-SJB (the St. Andrew Bay-Crooked
Island Sound-St. Joseph Bay complex), SVI (the Gulf of
Mexico-side of St. Vincent Island, Apalachicola Bay (Apalach-
icola), and Cedar Key to Anclote Key (CK-AK). Apalachee
Bay and Suwannee Sound are not included due to lack of
available environmental data
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also have contributed to the lack of neonates as
many species are small enough to pass through
spaces in the gillnet mesh despite stretched mesh
sizes in our sampling gear to 7.6 cm (3.0").

Our results suggest the northeast Gulf of
Mexico is an important region for juvenile sharks
and some areas could be considered important
‘nursery grounds’ for many species. Heupel et al.
(2007) proposed that nursery areas can be defined
based on three primary criteria: (1) juveniles are
more common in those areas than in other areas,
i.e., density in those areas is greater than the mean
density over all areas; (2) juveniles have a tenden-
cy to remain in or return to such areas for extend-
ed periods (weeks or months); and (3) the areas or
habitat are repeatedly used across years. There are
lines of evidence that suggest many areas sampled
in this study could be considered nurseries for
specific species. Species such as bull, spinner,
blacknose, finetooth, sandbar and scalloped ham-
merhead sharks were only consistently captured at
the highest rates in a single area (e.g., Mobile Bay
for bull sharks) or over a select group of bays
(e.g., Mobile Bay to Apalachicola Bay for
finetooth shark) over multiple years. Sharks such
as Atlantic sharpnose and blacktip sharks did not
appear to be restricted to any specific areas as
juvenile abundance was spread throughout all areas
of the northeastern Gulf of Mexico.

There is an apparent break in environmental
conditions coupled with shark species assemblages,
occurring between Mobile Bay and the SAB-CIS-
SJB complex. Estuaries to the west are less saline
and more turbid than Florida estuaries and largely
influenced by the Mississippi and Alabama-
Tombigbee River drainages. The majority of life
stages caught in those areas were YOY Atlantic
sharpnose and bull sharks. Young bull sharks are
generally found in estuaries with lower salinities
(Simpfendorfer et al. 2005, Drymon et al. 2014).
Adult female sharpnose sharks are more abundant
in offshore waters west of the Mississippi River
(Pollack and Ingram 2013) and the high abundance
of YOY Atlantic sharpnose in the more western
areas of this study may be the result of the

proximity of adult females pupping and the nearest
coastal estuaries. In contrast, there was a lack of
young bonnethead sharks in the more western
areas of this study. This could be due to the higher
occurrence of seagrass beds in the Florida panhan-
dle and Big Bend regions (Handley et al. 2007;
Yarbro and Carlson 2011) coupled with higher
observed salinities. Heupel et al. (2006) indicated
that the higher abundance of bonnethead sharks in
Pine Island Sound, FL, was in shallow water near
seagrass beds rather than deeper areas lacking
seagrass. Salinity has been found to be an impor-
tant factor driving distributions of bonnethead
sharks in Georgia (Belcher and Jennings 2009),
Texas (Froeschke et al. 2010a) and Florida
(Ubeda et al. 2009; Ward-Paige et al. 2014).

Of the five abiotic factors we tested, salinity
and water clarity were the most important in de-
termining shark assemblages between the Florida
and non-Florida estuaries. The importance of sa-
linity in driving shark distribution patterns has
been previously identified (e.g., Heupel and
Simpfendorfer 2008; Ward-Paige et al. 2014) but
other studies have noted the importance of temper-
ature (Morrissey and Gruber 1993; Matern et al.
2000; Ortega et al. 2009) and depth (Morrissey
and Gruber 1993; Heithaus et al. 2007) in a vari-
ety of species. These differences could be due to
real variations in shark preference among sites or
populations or a function of the areas sampled,
sampling gear and design, or statistical analysis
used to analyze the data. While this study covers
an extensive area over multiple years, it is appar-
ent that a year-round survey encompassing an even
broader area and environmental conditions are needed
to fully understand the abiotic features most likely to
influence shark distribution.

Some differences in community composition by
major geographic area are likely due to the appar-
ent zoogeographic break occurring between Mobile
Bay and the SAB-CIS-SJB complex with the west-
ern areas typically having lower salinity and water
clarity. While this is not the first study to note
differences in floral (Byron and Heck 2006) and
faunal assemblages (McClure and McEachran
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1992; Fodrie et al. 2010; Hannan et al. 2012;
Portnoy and Gold 2012) between these two areas,
it is the first to note differences in shark commu-
nity structure. Our data not only shows a differ-
ence in community structure between western and
eastern areas, but relative abundance is higher in
Florida waters as well (higher CPUEs overall).
The higher abundance may be due to higher hab-
itat variability in Florida estuaries as compared to
the Mississippi/Alabama barrier island systems.
Available habitat in Florida bays and estuaries is
diverse, ranging from shallow, seagrass habitats to
areas dominated by low water clarity and variable
salinity. This diversity provides more habitats for
sharks to occupy. While sharks are considered
highly mobile species capable of traversing a con-
tinuum of habitats during ontogeny, our coordinat-
ed large-scale sampling effort indicates that young

shark assemblage patterns can be explained by
some regional scale habitat characteristics.
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Appendix

Table 1 Least-squared regression equations used to calculate fork length (FL) from precaudal length (PCL), total length (TL), and stretched
total length (STL) for shark species collected by NOAA GULFSPAN collaborators, 2003–2011. Sexes are combined

Species n Range (cm) Regression Syx r-squared

Blacknose shark, C. acronotus 119 TL=40–125 FL=0.842 TL – 1.052 1.42 0.996

Spinner shark, C. brevipinna 282 TL=53.5–200 FL=0.855 TL – 2.743 1.67 0.995

Finetooth shark, C. isodon 351 TL=51–150 FL=0.818 TL+0.123 2.68 0.978

496 STL=52–147 FL=0.794 STL – 0.015 2.16 0.984

Blacktip shark, C. limbatus 789 TL=50–160 FL=0.830 TL – 0.828 2.10 0.982

1206 STL=51.5–179 FL=0.803 STL – 0.626 1.60 0.990

Sandbar shark, C. plumbeus 16 TL=53–132 FL=0.806 TL+1.623 1.33 0.995

33 STL=54–134 FL=0.800 STL+0.291 0.83 0.997

Florida smoothhound shark, M. norrisi 9 TL=39–70 FL=0.881 TL+0.896 1.24 0.986

Atlantic sharpnose shark, R. terraenovae 5066 PCL=21–82 FL=1.067 PCL+1.278 1.04 0.995

2759 TL=26–109 FL=1.161 TL+1.909 1.49 0.991

5030 STL=28–111 FL=0.840 STL – 1.670 1.20 0.994

Scalloped hammerhead shark, S. lewini 328 TL=30–108 FL=0.784 TL – 0.479 1.80 0.974

602 STL=36.5–218 FL=0.751 STL – 0.115 1.48 0.986

Bonnethead shark, S. tiburo 984 TL=37–116 FL=0.847 TL – 2.049 1.79 0.984

N, number of shark measured; Syx, standard error of regression coefficient; r-squared, coefficient of determination
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Table 2 Seasonal mean±standard deviation (range) of abiotic
variables by geographic area. Spring=April, May; Summer=June,
July, August; Fall=September, October. Areas are abbreviated as
follows: IN (inside the Mississippi, Alabama, and Florida barrier
islands), MS (Mississippi Sound), MB (Mobile Bay), OUT (Gulf
of Mexico-side of the Mississippi, Alabama, and Florida barrier

islands), SAB-CIS-SJB (the St. Andrew Bay-Crooked Island
Sound-St. Joseph Bay complex), SVI (the Gulf of Mexico-side
of St. Vincent Island, Apalachicola Bay (Apalachicola), Apalachee
Bay from St. Mark’s River to Horseshoe Beach (Apalachee),
Suwannee Sound (SS, from Horseshoe Beach to Cedar Key),
and Cedar Key to Anclote Key (CK-AK)

Area Season Temperature (°C) Salinity Depth
(m)

Water Clarity
(cm)

Dissolved O2

(mg/L)

IN Spring 24.2±2.6 (17.5–27.5) 20.9±5.8 (6.2–29.0) 3.0±1.4 (0.8–5.5) 154±85 (20–406) 6.3±1.5 (3.6–8.8)

Summer 29.6±1.5 (25.9–33.6) 25.7±4.2 (15.2–33.2) 3.6±1.5 (0.8–6.4) 128±51 (50–363) 5.7±1.1 (2.0–9.3)

Fall 25.5±3.2 (16.6–30.0) 25.1±4.5 (9.2–32.0) 3.4±1.4 (1.0–5.8) 142±60 (50–438) 6.6±1.1 (2.0–9.3)

MS Spring 25.6±2.4 (22.7–29.4) 17.4±2.4 (12.8–20.8) 2.1±0.7 (1.2–3.2) 100±40 (48–154) 6.2±1.7 (3.1–7.9)

Summer 29.9±1.8 (22.2–33.6) 23.6±4.7 (7.0–29.8) 2.2±0.8 (0.5–3.3) 89±30 (30–150) 5.8±1.2 (3.6–8.3)

Fall 25.5±3.1 (19.5–29.9) 24.7±5.1 (13.2–32.1) 2.5±0.9 (0.8–3.7) 92±40 (31–212) 6.2±1.3 (4.2–9.2)

MB Spring 25.1±2.1 (21.5–27.4) 4.2±3.0 (0.2–8.5) 2.2±1.0 (1.0–3.8) 62±26 (30–105) 6.1±2.6 (3.3–10.8)

Summer 30.1±1.3 (28.6–33.3) 10.1±4.0 (2.5–17.2) 2.5±1.0 (0.5–4.0) 62±19 (40–90) 6.1±1.1 (4.2–7.8)

Fall 23.7±5.2 (17.2–29.1) 18.5±8.5 (4.0–25.9) 2.6±1.0 (0.7–4.0) 116±49 (60–180) 6.9±1.5 (5.4–9.8)

OUT Spring 23.2±1.5 (21.1–25.3) 25.8±2.9 (22.7–30.6) 3.1±1.5 (2.0–6.5) 58±97 (2–170) 6.7±0.8 (5.3–7.6)

Summer 28.6±2.2 (24.7–31.2) 29.2±4.2 (20.7–36.5) 2.7±1.2 (1.1–4.6) 185±92 (40–360) 6.5±1.8 (3.9–13.2)

Fall 25.0±1.6 (23.3–28.0) 30.7±2.1 (26.0–33.0) 2.9±1.0 (1.5–4.4) 199±89 (50–320) 6.9±1.2 (6.2–9.9)

SAB-CIS-SJB Spring 24.7±2.9 (16.8–32.9) 31.7±3.0 (2.3–37.2) 3.9±1.5 (1.0–9.5) 257±99 (70–830) 6.2±1.0 (0.7–9.5)

Summer 30.1±1.3 (25.3–34.2) 31.5±2.9 (14.3–36.5) 4.2±1.7 (0.8–9.8) 236±87 (80–625) 5.0±0.9 (1.9–7.7)

Fall 27.2±2.7 (18.4–32.3) 30.9±2.5 (22.2–35.3) 4.1±1.6 (1.0–9.0) 257±90 (100–600) 5.4±0.9 (2.3–8.2)

SVI Spring 23.5±2.7 (17.4–27.3) 32.0±2.2 (26.2–36.6) 4.6±1.7 (1.5–8.9) 129±65 (50–450) 6.2±1.0 (4.8–11.0)

Summer 29.4±1.3 (24.7–31.3) 32.4±2.5 (17.1–35.2) 4.8±1.4 (2.3–9.0) 155±85 (20–550) 5.0±0.7 (2.7–6.8)

Fall 27.3±2.2 (19.5–30.8) 30.7±3.0 (19.7–35.1) 5.2±1.7 (2.8–8.7) 143±87 (40–400) 5.4±1.0 (3.1–7.5)

Apalachicola Spring 23.9±1.8 (19.6–26.6) 26.6±5.0 (17.3–36.0) 2.5±0.9 (1.1–3.8) 172±74 (40–400) 6.6±1.3 (3.6–8.5)

Summer 29.6±1.4 (25.6–32.0) 29.8±4.5 (16.6–35.0) 2.9±1.3 (1.0–6.8) 113±71 (30–300) 5.3±0.8 (3.2–7.3)

Fall 25.3±2.8 (18.7–29.2) 25.3±3.5 (16.7–32.1) 2.5±1.1 (0.8–5.0) 187±112 (50–400) 6.2±1.1 (4.5–8.8)

Apalachee Spring NA NA NA NA NA

Summer 30.2±1.1 (28.2–32.6) 29.3±3.5 (15.9–32.2) 2.6±1.2 (0.9–5.3) 202±94 (50–375) 5.9±1.2 (4.1–8.9)

Fall 27.4 NA 1.95 130 NA

SS Spring 26.5±0.9 (25.4–27.8) 25.5±8.2 (2.4–30.2) 3.9±1.7 (1.1–6.0) NA 5.0±0.6 (4.0–5.7)

Summer 29.7±1.4 (27.0–32.0) 27.7±3.8 (14.2–33.2) 2.6±0.9 (1.0–4.7) 100 4.9±1.0 (1.8–7.2)

Fall 24.9±3.0 (18.8–29.9) 27.6±3.5 (20.3–31.3) 2.7±0.8 (1.3–4.2) NA 5.7±1.2 (3.9–9.1)

CK-AK Spring 27.2±1.2 (24.7–28.8) 26.1±4.7 (12.5–32.2) 2.6±1.4 (1.1–6.2) NA 4.9±0.9 (3.6–7.8)

Summer 29.8±1.6 (26.7–33.2) 29.9±2.9 (16.1–36.0) 2.8±1.2 (0.5–6.2) 238±91 (90–500) 5.3±0.8 (3.5–7.5)

Fall 26.2±2.6 (19.4–30.0) 28.8±1.9 (25.0–31.9) 2.7±0.9 (1.7–4.5) NA 4.9±0.8 (3.4–6.6)
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